
Week 11 - Friday

 What did we talk about last time?
 Dynamic data structures
 Linked lists

 The most common library implementation of a linked list is a
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move

forwards or backwards in the list
Xhead

23 47 58

X tail

 Let's try a simple definition for a doubly linked list that holds an unlimited
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}

 Method signature:

 Loop through the list until reaching a node whose data is
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)

 When you write a container class (like a list), you have to write
it to contain something
 A list of String values
 A list of Wombat values
 A list of int values

 What if we could design a list class and not specify what its
contents are?

 Someone has to say what it contains only when they make a
particular list

 That's the idea behind generics in Java
 The name is because it lets you make a generic list instead of a

specific kind of list
 You can make classes (often, but not always, containers)
 These classes have one or more type parameters
 The type parameters are like variables that hold type

information
 When you make such an object, you have to say what its types

are

 Influenced by templates in C++, Java puts type parameters in
angle brackets (<>)

 For example, we can declare the following LinkedList
objects defined in the Java Collections Framework

 For technical reasons, you can only use reference types for
type parameters, never primitive types

LinkedList<String> words = new LinkedList<String>();
LinkedList<Wombat> zoo = new LinkedList<Wombat>();
LinkedList<Integer> numbers = new LinkedList<Integer>();

 You can only use type parameters on classes that were designed
from the beginning to be generic
 You can't force a class to take type parameters

 But you can leave off type parameters, what are called raw types
 You'll get a warning
 Java assumes that you use Object as the type parameter by default

 For convenience, you can often leave them out in the instantiation
step (after the new keyword)

 Java can often infer what the types should be:

LinkedList<String> words = new LinkedList<>();

 Although you can't use primitive types as type parameters, every
primitive type has a corresponding wrapper type
 boolean: Boolean
 byte: Byte
 char: Character
 short: Short
 int: Integer
 long: Long
 float: Float
 double: Double

 If you use the wrapper class as the type parameter, Java will automatically
convert primitive types to and from the wrapper class

 This is called boxing and unboxing
 For example:

 For the most part, it magically works
 However, storing primitive types is less efficient

LinkedList<Integer> numbers = new LinkedList<>();
numbers.add(7);
numbers.add(15);
int value = numbers.get(0); // Holds 7

 For the most part, you will use libraries that have generic
classes in them

 You will rarely need to design your own generic class
 Nevertheless, you will sometimes need to extend generic

classes or implement generic interfaces
 It's good to know how it all works

 When declaring a generic class, put angle brackets and the type
parameter after the name of the class

 The type parameter is often called T, standing for type
 Consider a simple generic class that holds a pair of…anything

public class Pair<T> {
private T x;
private T y;
public Pair(T x, T y) {

this.x = x;
this.y = y;

}
}

 Instead of String values, we can write a doubly linked list class that holds
anything
public class LinkedList<T> {

private static class Node<T> {
public T data;
public Node<T> next;
public Node<T> previous;

}

private Node<T> head = null
private Node<T> tail = null;
private int size = 0;
…

}

 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(T value)

 Method signature:

 If index is illegal, throw an
IndexOutOfBoundsException

 Loop through the list until reaching the node at location
index (using 0-based indexing)

 Return the data of the node in question

public T get(int index)

 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public T remove()

 Java Collections Framework
 Lists
 Sets

 Finish Project 3
 Due tonight by midnight!

 Keep reading Chapter 18

	COMP 2000
	Last time
	Questions?
	Project 3
	Linked Lists
	Doubly linked list
	Definition
	Find the index of an element
	Generics
	Containers
	Generics
	Angle brackets
	Details
	Primitive types
	Boxing and unboxing
	Creating Generic Classes
	Creating generic classes
	Type parameter syntax
	Definition
	Generic add to the end of the list
	Generic get an element from the list
	Generic remove the first element
	Upcoming
	Next time…
	Reminders

