
Week 11 - Friday



 What did we talk about last time?
 Dynamic data structures
 Linked lists









 The most common library implementation of a linked list is a 
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move 

forwards or backwards in the list
Xhead
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X tail



 Let's try a simple definition for a doubly linked list that holds an unlimited 
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}



 Method signature:

 Loop through the list until reaching a node whose data is 
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)





 When you write a container class (like a list), you have to write 
it to contain something
 A list of String values
 A list of Wombat values
 A list of int values

 What if we could design a list class and not specify what its 
contents are?

 Someone has to say what it contains only when they make a 
particular list



 That's the idea behind generics in Java
 The name is because it lets you make a generic list instead of a 

specific kind of list
 You can make classes (often, but not always, containers)
 These classes have one or more type parameters
 The type parameters are like variables that hold type 

information
 When you make such an object, you have to say what its types 

are



 Influenced by templates in C++, Java puts type parameters in 
angle brackets ( <> )

 For example, we can declare the following LinkedList
objects defined in the Java Collections Framework

 For technical reasons, you can only use reference types for 
type parameters, never primitive types

LinkedList<String> words = new LinkedList<String>();
LinkedList<Wombat> zoo = new LinkedList<Wombat>();
LinkedList<Integer> numbers = new LinkedList<Integer>();



 You can only use type parameters on classes that were designed 
from the beginning to be generic
 You can't force a class to take type parameters

 But you can leave off type parameters, what are called raw types
 You'll get a warning
 Java assumes that you use Object as the type parameter by default

 For convenience, you can often leave them out in the instantiation 
step (after the new keyword)

 Java can often infer what the types should be:

LinkedList<String> words = new LinkedList<>();



 Although you can't use primitive types as type parameters, every 
primitive type has a corresponding wrapper type
 boolean: Boolean
 byte: Byte
 char: Character
 short: Short
 int: Integer
 long: Long
 float: Float
 double: Double



 If you use the wrapper class as the type parameter, Java will automatically 
convert primitive types to and from the wrapper class

 This is called boxing and unboxing
 For example:

 For the most part, it magically works
 However, storing primitive types is less efficient

LinkedList<Integer> numbers = new LinkedList<>();
numbers.add(7);
numbers.add(15);
int value = numbers.get(0);  // Holds 7





 For the most part, you will use libraries that have generic 
classes in them

 You will rarely need to design your own generic class
 Nevertheless, you will sometimes need to extend generic 

classes or implement generic interfaces
 It's good to know how it all works



 When declaring a generic class, put angle brackets and the type 
parameter after the name of the class

 The type parameter is often called T, standing for type
 Consider a simple generic class that holds a pair of…anything

public class Pair<T> {
private T x;
private T y;
public Pair(T x, T y) {

this.x = x;
this.y = y;

}
}



 Instead of String values, we can write a doubly linked list class that holds 
anything
public class LinkedList<T> {

private static class Node<T> {
public T data;
public Node<T> next;
public Node<T> previous;

}

private Node<T> head = null
private Node<T> tail = null;
private int size = 0;
…

}



 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node 

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(T value)



 Method signature:

 If index is illegal, throw an 
IndexOutOfBoundsException

 Loop through the list until reaching the node at location 
index (using 0-based indexing)

 Return the data of the node in question

public T get(int index)



 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public T remove()





 Java Collections Framework
 Lists
 Sets



 Finish Project 3
 Due tonight by midnight!

 Keep reading Chapter 18
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