
Week 11 - Friday

 What did we talk about last time?
 Dynamic data structures
 Linked lists

 The most common library implementation of a linked list is a
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move

forwards or backwards in the list
Xhead

23 47 58

X tail

 Let's try a simple definition for a doubly linked list that holds an unlimited
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}

 Method signature:

 Loop through the list until reaching a node whose data is
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)

 When you write a container class (like a list), you have to write
it to contain something
 A list of String values
 A list of Wombat values
 A list of int values

 What if we could design a list class and not specify what its
contents are?

 Someone has to say what it contains only when they make a
particular list

 That's the idea behind generics in Java
 The name is because it lets you make a generic list instead of a

specific kind of list
 You can make classes (often, but not always, containers)
 These classes have one or more type parameters
 The type parameters are like variables that hold type

information
 When you make such an object, you have to say what its types

are

 Influenced by templates in C++, Java puts type parameters in
angle brackets (<>)

 For example, we can declare the following LinkedList
objects defined in the Java Collections Framework

 For technical reasons, you can only use reference types for
type parameters, never primitive types

LinkedList<String> words = new LinkedList<String>();
LinkedList<Wombat> zoo = new LinkedList<Wombat>();
LinkedList<Integer> numbers = new LinkedList<Integer>();

 You can only use type parameters on classes that were designed
from the beginning to be generic
 You can't force a class to take type parameters

 But you can leave off type parameters, what are called raw types
 You'll get a warning
 Java assumes that you use Object as the type parameter by default

 For convenience, you can often leave them out in the instantiation
step (after the new keyword)

 Java can often infer what the types should be:

LinkedList<String> words = new LinkedList<>();

 Although you can't use primitive types as type parameters, every
primitive type has a corresponding wrapper type
 boolean: Boolean
 byte: Byte
 char: Character
 short: Short
 int: Integer
 long: Long
 float: Float
 double: Double

 If you use the wrapper class as the type parameter, Java will automatically
convert primitive types to and from the wrapper class

 This is called boxing and unboxing
 For example:

 For the most part, it magically works
 However, storing primitive types is less efficient

LinkedList<Integer> numbers = new LinkedList<>();
numbers.add(7);
numbers.add(15);
int value = numbers.get(0); // Holds 7

 For the most part, you will use libraries that have generic
classes in them

 You will rarely need to design your own generic class
 Nevertheless, you will sometimes need to extend generic

classes or implement generic interfaces
 It's good to know how it all works

 When declaring a generic class, put angle brackets and the type
parameter after the name of the class

 The type parameter is often called T, standing for type
 Consider a simple generic class that holds a pair of…anything

public class Pair<T> {
private T x;
private T y;
public Pair(T x, T y) {

this.x = x;
this.y = y;

}
}

 Instead of String values, we can write a doubly linked list class that holds
anything
public class LinkedList<T> {

private static class Node<T> {
public T data;
public Node<T> next;
public Node<T> previous;

}

private Node<T> head = null
private Node<T> tail = null;
private int size = 0;
…

}

 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(T value)

 Method signature:

 If index is illegal, throw an
IndexOutOfBoundsException

 Loop through the list until reaching the node at location
index (using 0-based indexing)

 Return the data of the node in question

public T get(int index)

 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public T remove()

 Java Collections Framework
 Lists
 Sets

 Finish Project 3
 Due tonight by midnight!

 Keep reading Chapter 18

	COMP 2000
	Last time
	Questions?
	Project 3
	Linked Lists
	Doubly linked list
	Definition
	Find the index of an element
	Generics
	Containers
	Generics
	Angle brackets
	Details
	Primitive types
	Boxing and unboxing
	Creating Generic Classes
	Creating generic classes
	Type parameter syntax
	Definition
	Generic add to the end of the list
	Generic get an element from the list
	Generic remove the first element
	Upcoming
	Next time…
	Reminders

